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ABSTRACT 

In hydrological applications, the problem of the definition of a type of the stochastic model of the process 
under investigation and its parameters estimation is important. One of the most interesting cases is the closed 
water body level forecasting. Being the integrated characteristic, the level of a closed water body is rather 
sensitive to the behavior of the processes determining the inflow and the outflow components of the water 
balance on long time intervals. 

 To solve the problem of forecasting of the Caspian Sea level fluctuations, both Langevin approach to the 
solution of the stochastic water balance equation and the diffusion theory of Fokker-Planck- Kolmogorov are 
used.  

For the description of river runoff fluctuations there are used:  
- the solution of Markov equation in the form of the bilinear decomposition on systems of orthogonal func-

tions; 
- stochastic differential equations (SDE) in the form Ito or Stratonovich; 
- diffusion equations of Fokker-Planck-Kolmogorov; 
 

1. INTRODUCTION 

In hydrological applications, the problem of 
the definition of a type of the stochastic model of 
the process under investigation and its parameters 
estimation is important. One of the most interesting 
cases is the closed water body level forecasting. 
Being the integrated characteristic, the level of a 
closed water body is rather sensitive to the behav-
ior of the processes determining the inflow and the 
outflow components of the water balance on long 
time intervals. 

The researches carried out during recent dec-
ades have shown the description of the runoff fluc-
tuations as the simple Markov chain to be accept-
able.. To solve the problem of forecasting of the 
Caspian Sea level fluctuations, both Langevin ap-
proach to the solution of the stochastic water bal-
ance equation and the diffusion theory of Fokker-
Planck- Kolmogorov are used.  

For the description of river runoff fluctuations 
there are used:  
- the solution of Markov equation in the form of 

the bilinear decomposition on systems of or-
thogonal functions; 

- stochastic differential equations (SDE) in the 

form Ito or Stratonovich; 
- diffusion equations of Fokker-Planck- Kolmo-

gorov; 
Let us consider the listed problems in more de-

tail. 
 

2. THE SOLUTION OF MARKOV EQUA-
TION IN THE FORM OF BILINEAR DE-
COMPOSITION ON SYSTEMS OF OR-
THOGONAL POLYNOMS. 

The two-dimensional density satisfies to 
Markov equation (under some conditions) if it the 
sum of the following kind [3]: 
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where λk are positive numbers, so as  
0 < λ1 ≤ λ2 ≤ λ...≤ λk.<..., 
and ϕk(x) andϕk(y)  form the system of orthogonal 
functions with the weight p(x)   

Generalization of (1) on the case of the so-
called two-parametric gamma distribution has been 
developed by E.S.Blohinov and O.V.Sarmanov. 
The two-dimensional density for 
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3. DIFFUSION PROCESSES. 

 
The transition probability density f that satisfies 

to Markov equation also satisfies to the inverse 
Fokker-Planck-Kolmogorov (FPK) equation, 
which looks like: 
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Where a  (s, x) is called a drift coefficient, and b  
(s, x) - a diffusion coefficient.  

The two-dimensional density that represents the 
solution of the equation (3) generates the diffusion 
Markov process.  

 
THE STOCHASTIC DIFFERENTIAL EQUA-
TIONS. 

 
Following [4], let us consider the case when 

some system is described by the following differ-
ential equation: 
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with the given initial conditions: h(t0) =  h0 , n( t)  is 
normal white noise.  

If h(t) is the diffusion Markov process with drift 
coefficients a (h, t) and diffusion coefficients b (h, 
t), then for the stochastic differential equation 
(SDE) the following relations are true: 

 

 a(h,t) = f(h,t)+
h

thg
thg

N

∂
∂ ),(
),(

4
0       (5)  

b(h,t) = N0 g
2(h,t)/2            (6) 

 
Here N0 is the white noise intensity. 
The solution of SDE, received in such a way, 

can be obtained by two methods. The first method 
named the Langevin one assumes the notation of 
SDE solution by quadratures and the consideration 
of this solution as some operator, transforming the 
input random process into the output one.  

The other idea will consist in an identification 
of the written equation of the system with the sto-
chastic differential equation and in the calculation 
of the FPK equation coefficients with its subse-
quent solution. 
 

4. MARKOV PROCESS WITH TWO-
PARAMETRICAL A PRIORI GAMMA-
DISTRIBUTION. 

Having got two-dimensional density, let us re-
ceive corresponding coefficients of the FPK equa-
tion and then SDE. 

So, for the one-dimensional distribution law 

xex
Ã

xp γγ
γ

γ
γ −−= 1

)(
)(            (7) 

Let us calculate the drift coefficient in the FPK 
equation:  
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Let us write the stochastic differential equation 
as  
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5. MODELLING OF PSEUDO-RANDOM 

VARIABLES ACCORDING TO THE 
SCHEME OF THE MARKOV GAMMA-
PROCESS. 

Let us further consider the third approach based 
on the difference approximation of the solution of 
the stochastic differential equation [4]: 
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For calculations using (11) it is necessary to 

calculate derivatives on each time step and to 
simulate the sequence of Wiener process incre-
ments with the given parameters. 

 
 

6. THE SOLUTION OF THE STOCHASTIC 
DIFFERENTIAL EQUATION OF THE 
CASPIAN SEA WATER BALANCE. 
The differential equation of water balance of 

Caspian Sea looks like [2]: 
 

)()( tgth
dt

dh +−= α  ,         (12) 

where h -is the sea level; α - is the parameter de-
pendent on the coast steepness and g is the result-
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ing of the processes of inflow and evaporation 
from sea surface minus the precipitation on its sur-
face. It is supposed also, that g is the stationary 
Markov process with autocorrelation coefficient 
and a dispersion known. 

The solution of the equation (12) is possible to 
be found in two ways. One of them is the already 
mentioned Langevin approach considered in [2] in 
detail. 

At realization of Langevin approach it is diffi-
cult to receive a form of conditional distribution 
because the corresponding equations are written 
for parameters (moments) of distribution. 

For the numerical solution of the equation (12) 
let us use its difference approximation and the cor-
responding algorithm considered above.  

Using random numbers generation algorithm, 
let us receive realizations of the sea level course 
for 50 years forward with the same initial condi-
tion. The results of such numerical experiment are 
presented in table 1. The comparison of the results 
of two approaches applied to the solution of the 
probability forecasting problem of the Caspian sea 
level shows, that the limitation by Markov ap-
proximation results in regular overestimate of con-
ditional dispersion for the forecasting  period about 
10 years and less. At big time period the results 
practically coincide, that as a whole corresponds to 
the assumptions made earlier. 
Table 1. Results of numerical solution of CDE of 

the Caspian Sea balance (38) with initial condition 
H0 =1 m. 
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1 0.77 0.21 0.02 0.13 
5 0.69 0.43 0.06 0.39 
10 0.58 0.57 0.02 0.54 
20 0.45 0.71 -0.01 0.69 
30 0.32 0.74 -0.01 0.76 
40 0.23 0.79 -0.04 0.79 
50 0.16 0.80 0.07 0.81 
 

7. CONCLUSIONS. 
• For modelling the runoff and evaporation proc-

esses, the stochastic differential equation is of-
fered generating the so-called Markov gamma- 
process with the linear regression equation.  

• The description of the Caspian sea level dy-
namics in frameworks of the diffusion ap-
proximation (Fokker-Planck-Kolmogorov 

equation) is acceptable for forecast time of 
more than 10 years. 
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